0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

От чего зависит скорость вращения двигателя переменного тока

Работы по переборке электродвигателя подходят к завершению. Приступаем к расчёту шкивов ремённой передачи станка. Немного терминологии по ремённой передаче.

Главными исходными данными у нас будут три значения. Первое значение это скорость вращения ротора (вала) электродвигателя 2790 оборотов в секунду. Второе и третье это скорости, которые необходимо получить на вторичном валу. Нас интересует два номинала 1800 и 3500 оборотов в минуту. Следовательно, будем делать шкив двухступенчатый.

Заметка! Для пуска трёхфазного электродвигателя мы будем использовать частотный преобразователь поэтому расчётные скорости вращения будут достоверными. В случае если пуск двигателя осуществляется при помощи конденсаторов, то значения скорости вращения ротора будут отличаться от номинального в меньшую сторону. И на этом этапе есть возможность свести погрешность к минимуму, внеся поправки. Но для этого придётся запустить двигатель, воспользоваться тахометром и замерить текущую скорость вращения вала.

Наши цели определены, переходим выбору типа ремня и к основному расчёту. Для каждого из выпускаемых ремней, не зависимо от типа (клиноременный, поликлиновидный или другой) есть ряд ключевых характеристик. Которые определяют рациональность применения в той или иной конструкции. Идеальным вариантом для большинства проектов будет использование поликлиновидного ремня. Название поликлиновидный получил за счет своей конфигурации, она типа длинных замкнутых борозд, расположенных по всей длине. Названия ремня происходит от греческого слова «поли», что означает множество. Эти борозды ещё называют по другому – рёбра или ручьи. Количество их может быть от трёх до двадцати.

Поликлиновидный ремень перед клиноременным имеет массу достоинств, таких как:

  • благодаря хорошей гибкости возможна работа на малоразмерных шкивах. В зависимости от ремня минимальный диаметр может начинаться от десяти – двенадцати миллиметров;
  • высокая тяговая способность ремня, следовательно рабочая скорость может достигать до 60 метров в секунду, против 20, максимум 35 метров в секунду у клиноременного;
  • сила сцепления поликлинового ремня с плоским шкивом при угле обхвата свыше 133° приблизительно равна силе сцепления со шкивом с канавками, а с увеличением угла обхвата сила сцепления становится выше. Поэтому для приводов с передаточным отношением свыше трёх и углом обхвата малого шкива от 120° до 150° можно применять плоский (без канавок) больший шкив;
  • благодаря легкому весу ремня уровни вибрации намного меньше.

Принимая во внимание все достоинства поликлиновидных ремней, мы будем использовать именно этот тип в наших конструкциях. Ниже приведена таблица пяти основных сечений самых распространённых поликлиновидных ремней (PH, PJ, PK, PL, PM).

Читайте так же:
Как можно пробить человека по паспортным данным?
PJPKPLPM
Шаг ребер, S, мм1.62.343.564.79.4
Высота ремня, H, мм2.74.05.49.014.2
Нейтральный слой, h0, мм0.81.21.53.04.0
Расстояние до нейтрального слоя, h, мм1.01.11.51.52.0
Минимальный диаметр шкива, db, мм13204575180
Максимальная скорость, Vmax, м/с6060504035
Диапазон длины, L, мм1140…2404356…2489527…2550991…22352286…16764

Рисунок схематичного обозначения элементов поликлиновидного ремня в разрезе.

Словарь специальных терминов

Азбука гидроэнергетики

Частота вращения—физическая величина, характеристика периодического процесса, равная числу полных циклов, совершённых за единицу времени. Стандартные обозначения в формулах — υ, f, ω или F. Единицей частоты в Международной системе единиц (СИ) в общем случае является Герц (Гц, Hz). Величина, обратная частоте, называется периодом.

Периодический сигнал характеризуется мгновенной частотой, являющейся скоростью изменения фазы, но тот же сигнал можно представить в виде суммы гармонических спектральных составляющих, имеющих свои частоты. Свойства мгновенной частоты и частоты спектральной составляющей различны, подробнее об этом можно прочитать, например, в книге Финка «Сигналы, помехи, ошибки».

В теоретической физике, а также в некоторых прикладных электрорадиотехнических расчётах удобно использовать дополнительную величину — циклическую (круговую, радиальную, угловую) частоту (обозначается ω). Циклическая частота связана с частотой колебаний соотношением ω=2πf. В математическом смысле циклическая частота — это первая производная полной фазы колебаний по времени. Единица циклической частоты — радиан в секунду (рад/с, rad/s) .

В механике при рассмотрении вращательного движения аналогом циклической частоты служит угловая скорость.

Частота дискретных событий (частота импульсов) — физическая величина, равная числу дискретных событий, происходящих за единицу времени. Единица частоты дискретных событий секунда в минус первой степени (с −1 , s −1 ), однако на практике для выражения частоты импульсов обычно используют герц.

Частота вращения — это физическая величина, равная числу полных оборотов за единицу времени. Единица частоты вращения — секунда в минус первой степени (с −1 , s −1 ), оборот в секунду. Часто используются такие единицы, как оборот в минуту, оборот в час и т. д.

Другие величины, связанные с частотой

  • Ширина полосы частот — fmaxfmin
  • Частотный интервал — log(fmax/fmin)
  • Девиация частоты —Δf/2
  • Период — 1/f
  • Длина волны — υ/f
  • Угловая скорость (скорость вращения) — /dt; FBP

Метрологические аспекты

Измерения

Для измерения частоты применяются частотомеры разных видов, в том числе: для измерения частоты импульсов — электронно-счётные и конденсаторные, для определения частот спектральных составляющих — резонансные и гетеродинные частотомеры, а также анализаторы спектра.

Читайте так же:
Что такое синхронизация контактов в контакте?

Для воспроизведения частоты с заданной точностью используют различные меры — стандарты частоты (высокая точность), синтезаторы частот, генераторы сигналов и др.

Сравнивают частоты компаратором частоты или с помощью осциллографа по фигурам Лиссажу.

Эталоны

Государственный первичный эталон единиц времени, частоты и национальной шкалы времени ГЭТ 1-98 — находится во ВНИИФТРИ

Вторичный эталон единицы времени и частоты ВЭТ 1-10-82 — находится в СНИИМ (Новосибирск)

Способы определения характеристик электромотора.

Чтобы определить, к какой из этих групп относится двигатель, не нужно разбирать его, как это советуют некоторые специалисты, чтобы обеспечить себе заказ на работу. Дело в том, что разбор электродвигателя может осуществить только мастер достаточной квалификации. На самом же деле достаточно открыть защитную крышку (другое название подшипниковый щит) и найти катушку обмотки. Таких катушек может быть несколько, но достаточно одной. В случае если к валу прикреплены полумуфта или шкив, потребуется снять еще и нижний щит.

Если катушки соединены при помощи деталей, которые мешают рассмотреть информацию, эти детали ни в коем случае нельзя отсоединять. Нужно попробовать определить на глаз соотношение размера катушки и статора.

Статором называется неподвижная часть электромотора, подвижная же имеет название ротор. В зависимости от конструктивных особенностей, в качестве ротора может выступать как сама катушка, так и магниты.

Если катушка закрывает собой половину кольца статора, такой двигатель относится к третьей группе, то есть способен выдавать до 3000 оборотов. Если размер катушки составляет треть от размеров кольца, это мотор второго типа, соответственно, он способен развить 1500 оборотов в минуту. Наконец, если катушка только на четверть закрывает собой кольцо, это первый тип. Электромотор развивает мощность в 1000 оборотов.

Существует еще один способ определения частоты вращения вала роторной части. Для этого также нужно снять крышку и найти верхнюю часть обмотки. По расположению секций обмотки и определяется скорость. Обычно внешняя секция занимает 12 пазов. Если сосчитать общее количество пазов и разделить на 12, можно получить число полюсов. Если число полюсов равно 2, двигатель имеет скорость вращения около 3000 об/мин. Если полюсов получилось 4, это соответствует 1500 оборотам в минуту. Если 6, то 1000 об/мин. Если 8, то 700 оборотов.

Читайте так же:
Как настроить wi fi на андроид?

Третий способ определения количества оборотов внимательно осмотреть бирку на самом двигателе. Цифра на маркировке в конце и соответствует числу полюсов. Например, для маркировки АИР160S6 последняя цифра 6 указывает, сколько полюсов использует катушка.

Проще же всего измерить число оборотов специальным прибором тахометром. Но в силу узкой специализации применения данный способ нельзя рассматривать как общедоступный. Таким образом, даже если не сохранилось никакой технической документации, существует как минимум 4 способа определить число оборотов электрического мотора.

Зачем измерять мощность и крутящий момент?

Во-первых это необходимая процедура при разработке и сертификации любого нового двигателя.

Во-вторых эти данные помогут при дальнейшей настройке и доработке двигателя, чтобы добиться наилучших эксплуатационных характеристик.

В третьих кривая мощности и крутящего момента, если её сравнить с паспортной — это прямой показатель технического состояния любого двигателя.

График мощность

Графики мощности дизельного двигателя до ремонта и после ремонта, полученные с испытательного стенда на базе гидротормоза, который можно приобрести в нашей компании.

Равномерное вращение

Если тело за равные промежутки времени поворачивается на один и тот же угол, то такое вращение называют равномерным. При этом модуль угловой скорости находят как:

где $(varphi)$ – угол поворота, t – время, за которое этот поворот совершён.

Равномерное вращение часто характеризуют при помощи периода обращения (T), который является временем, за которое тело производит один оборот ($Delta varphi=2 pi$). Угловая скорость связана с периодом обращения как:

С числом оборотов в единицу времени ($nu) угловая скорость связана формулой:

Понятия периода обращения и числа оборотов в единицу времени иногда используют и для описания неравномерного вращения, но понимают при этом под мгновенным значением T, время за которое тело делало бы один оборот, если бы оно вращалось равномерно с данной мгновенной величиной скорости.

Как определить частоту вращения вентилятора?

Частота оборотов показывает его производительность установки. Для того чтобы вычислить частоту движения крыльчатки, применяется прибор под названием тахометр. Для более точного определения рекомендуется применять тахометры класса точность 0.5 или 1.

Тахометры различаются по месту установки и подразделяются на:

  • стационарные;
  • дистанционные;
  • ручные.

Также тахометры различаются по принципу действия. Они бывают механическими, магнитными, магнитно-индукционными и электронными.

Читайте так же:
Сколько должен выдавать генератор на ваз 2107?

Современный электронный тахометр в действии

Рассмотрим пример, указанный на картинке. С помощью лазерного луча, направленного на колесо, идёт измерение частоты вращения (rpm). Все данные отображаются на небольшом дисплее.

Задачи по расчету параметров насосов

Задача

При частоте вращения вала 1000 мин -1 центробежный насос потребляет 4 кВт энергии, подает 20 литров воды в секунду под напором 10 метров.
Определить, как изменятся рабочие параметры насоса, если частоту вращения вала увеличить до 3000 мин -1 .

Зависимость рабочих параметров насоса от частоты вращения вала выражается уравнениями:

т. е. при увеличении частоты вращения вала насоса в три раза, его подачу, напор и потребляемую мощность можно определить по формулам:

Ответ: при увеличении частоты вращения до 3000 мин -1 подача насоса составит 60 л/с, напор – приблизительно 17,3 м, а потребляемая мощность – приблизительно 11,95 кВт.

Задача

Определите, какова объемная подача двухцилиндрового поршневого насоса, если диаметр его поршней d = 0,1 м, рабочий ход поршней l = 0,1 м, частота вращения вала приводного электродвигателя n = 960 мин -1 .
Объемные потери не учитывать.

Объемная подача поршневого насоса может быть определена, как рабочий объем всех его цилиндров, умноженный на количество рабочих циклов за единицу времени.
Частота вращения вала насоса n = 960 мин -1 = 16 с -1 , т. е. за одну секунду двухцилиндровый насос совершает 2×16 рабочих циклов (каждый цилиндр за один оборот совершает 1 цикл).
Рабочий объем одного цилиндра: Vц = l πd 2 /4 (м 3 ).

Тогда объемная подача насоса (без учета потерь) при данной частоте вращения составит:

Q = 2×16×l πd 2 /4 = 2×16×0,1×3,14×0,1 2 /4 = 0,02512 м 3 /с.

Ответ: объемная подача насоса составляет чуть более 25 л/с.

Задача

Определить диаметр поршней d аксиально-поршневого насоса, если известны параметры:

  • диаметр окружности, на которой размещены поршни D = 80 мм;
  • количество поршней в насосе z = 6;
  • угол наклона диска (шайбы насоса) к оси цилиндров γ = 45˚;
  • подача насоса Q равна 0,001 м 3 /с при частоте вращения вала n = 50 с -1 .

Подача аксиально-поршневого насоса определяется по формуле:

Q = znD tg γ πd 2 /4 .

С учетом того, что tg γ = tg 45˚ = 1, а диаметр D в системе единиц СИ равен 0,08 м, выразим и определим из этой формулы диаметр поршней d :

d = √(4Q/πznD tg γ) = √ (4×0,001/3,14×6×50×0,08×1) ≈ 0,0073 м ≈7,3 мм.

Ответ: диаметр поршней насоса приблизительно равен 7,3 мм.

Задача

Определите, какую мощность должен иметь электродвигатель привода водяного насоса, если насос при подаче Q = 0,05 м 3 /с создает напор Н = 40 м, а его полный КПД η = 0,6.
Плотность воды принять равной ρ = 1000 кг/м 3 .

Полезная мощность любого насоса может быть определена по формуле:

Читайте так же:
Как найти массу молекулы вещества?

где g = 9,81 м/с 2 – ускорение свободного падения.

Потребляемая мощность Nп , т. е. мощность, которую на работу насоса затрачивает электродвигатель Nэд (без учета потерь в приводе), равна полезной мощности с учетом КПД:

Nэд = Nп/η = ρgQH/η = 1000×9,81×0,05×40/0,6 = 32700 Вт = 32,7 кВт.

Ответ: для обеспечения работы насоса в заданном режиме
необходим электродвигатель мощностью 32,7 кВт.

Задача

Привод водяного насоса обеспечивает частоту вращения его вала n1 = 15 с -1 , при этом подача насоса составляет Q1 = 0,01 м 3 /с, а напор H1 = 20 м.
Определите, какова должна быть частота вращения вала насоса, если потребуется увеличить его напор до 80 м.
Как изменится при этом подача насоса?

Зависимость рабочих параметров насоса от частоты вращения его вала выражается уравнениями:

т. е. для увеличения напора в четыре раза, частота вращения вала насоса должна возрасти в два раза:

В соответствии с первой формулой, при увеличении частоты вращения вала насоса в два раза его подача тоже возрастет в два раза, и составит Q2 = 0,02 м 3 /с.

Ответ: для увеличения напора до 80 м (т. е. в четыре раза)
вал насоса должен вращаться с частотой 30 с -1 , при этом подача насоса возрастет в два раза.

Задача

определение характеристик насосов

Определите по приведенной здесь графической характеристике поршневого насоса, какова будет потребляемая им мощность и полный КПД, если подача равна 0,52 л/с.
Какое давление в системе при этом насос развивает?
Охарактеризуйте форму кривой, отображающей график зависимости Q = f(p) .

При подаче Q = 0,52 л/с насос потребляет мощность примерно равную 1,2 кВт, его КПД составляет 0,65 (максимальное значение).
Давление в системе при этом равно 1,6 МПа.

Зависимость подачи насоса от давления в системе отображает кривая Q = f(p) , которая показывает, что с нарастанием давления в системе подача уменьшается, при этом резкий спад величины подачи начинается при увеличении давления от точки на графике, характеризующей максимальный КПД насоса.

Скачать задачи по гидравлике с вариантами решений
(в формате Word, размер файла 324 кБ — 27 задач с решениями и вопросы по насосам)

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector