3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как найти среднюю скорость автомобиля после поездки в разных режимах

Как найти среднюю скорость автомобиля после поездки в разных режимах?

Часто водителю необходимо отыскать такой важный показатель, как средняя скорость автомобиля после той или иной поездки. Иногда эта цифра будет важным фактом для водителя транспорта компании, а в иных случаях — просто интересное число для владельца транспортного средства. В любом случае, расчет средней скорости важен для многих водителей. В современных автомобилях, оснащенных эффективными компьютерными системами управления, достаточно просто выбрать нужный режим отображения информации на экране компьютера, чтобы узнать среднюю скорость за определенный промежуток времени или пробег.

Для вычисления средней скорости поездки на современной машине достаточно подготовиться заранее, сбросив показатели суточного пробега на нуль, а также обнулив средние данные расхода и скорости. После этого вы сможете не засекать никакого времени, а также не продумывать формулы по расчету средней скорости поездки. Тем не менее, такой вариант не всегда подходит, да и не все автомобили оснащены хорошим бортовым компьютером. Потому следует разобраться с тем, как определять среднюю скорость и прочие параметры.

Равноускоренное движение

Если в течение времени положение тела изменяется относительно предметов, находящихся в покое, то считается, что оно движется. При этом в качестве основного параметра, описывающего перемещение, используется скорость. Движение тела или точки можно представить в виде линии, повторяющей путь прохождения. Называется она траекторией. Если линия прямая, то движение считается прямолинейным.

Равноускоренное движение

Неравномерное движение характеризуется перемещением по различной траектории с непостоянной величиной скорости. При этом изменение положения может быть равноускоренным, то есть параметр на одинаковых промежутках увеличивается или уменьшается на одно и то же значение. В качестве примера можно привести падение камня.

В произвольно взятой точке скорость перемещения равна ускорению свободного падения.

Таким образом, если векторы V и ускорения A лежат вдоль прямой, то в проекциях такое направление можно рассматривать как алгебраические величины. При равноускоренном движении по прямой траектории скорость точки вычисляется по формуле: V = V0 + A*t. Где:

  • V0 — начальная скорость;
  • A — ускорение (имеет постоянное значение);
  • t — время движения.

Это основная формула в физике. На графике она изображается как прямая линия v (t). По оси ординат откладывается время, а абсцисс — скорость. Построив график, по наклону прямой можно определить ускорение точки A. Для этого используется формула нахождения сторон треугольника: A = (v-v0) / t.

Если на оси времени выделить промежуток Δt, то можно предположить, что движение будет равномерным и описываться некоторым параметром, равным мгновенному значению в середине отрезка. Эта моментальная величина является векторной. Она численно равна пределу, который пытается достигнуть скорость за промежуток времени, стремящийся к нулю. В физике это состояние описывается формулой мгновенной скорости: V = lim (Δ s/ Δ t) = r -1 (t). То есть, с математической точки зрения, это первая производная.

Исходя из этого можно утверждать, что движение Δs = v*Δt. Так как произведение ускорения на время определяется разницей V -V0, то верной будет запись: S = V0*t + A*t 2 /2 = (V 2 — V 2 0) /2*A.

Из этой формулы можно вывести выражение для нахождения конечной скорости материальной точки: V = (V 2 0 — 2* A * s) ½ . Если же в начальный момент V0 = 0, то формулу можно упростить до вида: V = (2* A * s) ½ .

Как найти среднюю скорость имея только две скорости?

1 мин = 60 с; 1 ч = 3600 с; 1 км = 1000 м; 1 м/с = 3,6 км/ч.

Физика 7 класс: все формулы и определения КРУПНО на трех страницах

ПРИМЕРЫ РЕШЕНИЯ ТИПОВЫХ ЗАДАЧ

задача 1

Задача № 1. Ласточка летит со скоростью 36 км/ч. Какой путь она преодолеет за 0,5 ч?

Задача № 1. Конькобежец может развивать скорость до 13 м/с. За какое время он пробежит дистанцию длиной 2,6 км?

Задача 3

Задача № 3. Автомобиль «Чайка» развивает скорость до 160 км/ч, а почтовый голубь — до 16 м/с. Сможет ли голубь обогнать автомобиль?

Решение. Чтобы сравнить скорости движения тел, надо перевести их в одинаковые единицы измерения. Перевод скорости из одних единиц в другие выполняют следующим образом. 160 км = 160000 м, 1 ч = 3600 с. Следовательно, за 1 с автомобиль пройдет путь 160000 : 3600 = 44 (м), значит:

Ответ: Голубь не обгонит автомобиль, так как 16 м/с < 44 м/с.

Задача № 4. Вдоль дороги навстречу друг другу летят скворец и комнатная муха. На рисунке представлены графики движения скворца (I) и мухи (II). Пользуясь графиком, определите:

Читайте так же:
Для чего нужен оранжевый провод на магнитоле?

1) Каковы скорости движения скворца и мухи?
2) Через сколько секунд после начала движения они встретятся?
3) Какое расстояние они пролетят до места встречи?

Решение.
1. Скорость движения скворца определим по формуле v=S/t. Выберем на графике произвольное время и определим, какое расстояние за это время пролетел скворец. Видно, что за 5 с скворец пролетел 100 м. Тогда

Аналогично найдем скорость движения мухи:


2. Точка А (точка пересечения графиков движения) соответствует моменту встречи. Скворец и муха встретятся через 4 секунды.

3. Скворец до места встречи пролетит расстояние SI = 80 м. Муха пролетит расстояние SII = 100 м — 80 м = 20 м.

Ответ: 1) скворец 20 м/с, муха 5 м/с, 2) через 4 с, 3) скворец 80 м, муха 20 м

Задача № 5. Определите среднюю скорость движения плота, если за 20 минут он переместился на 900 м. Скорость выразить в км/ч.

Ответ: Средняя скорость плота 2,7 км/ч.

Задача № 6. Стоящий на эскалаторе человек поднимается за 2 мин, а бегущий по эскалатору — за 40 с. За какое время этот человек поднимется по неподвижному эскалатору?

ОТВЕТ: 1 мин.

Задача № 7. Моторная лодка за 3 ч проходит расстояние от города до поселка, расположенного ниже по течению реки. Сколько времени займет обратный путь, если скорость движения лодки относительно воды в 4 раза больше скорости течения?

ОТВЕТ: 5 ч.

Задача № 8 (повышенной сложности). Рыбак плыл по реке на лодке, зацепил шляпой за мост, и она свалилась в воду. Через час рыбак спохватился, повернул обратно и подобрал шляпу на 4 км ниже моста. Какова скорость течения? Скорость лодки относительно воды оставалась неизменной по модулю.

ОТВЕТ: 2 км/ч.

Задача № 9 (олимпиадного уровня). Из городов А и Б навстречу друг другу по прямому шоссе одновременно выехали два велосипедиста. Скорость первого 10 км/ч, скорость второго 15 км/ч. Одновременно с велосипедистами из города А вылетела ласточка. Она долетает до второго велосипедиста, разворачивается, Долетает до первого велосипедиста и летает так между ними до тех пор, пока велосипедисты не встретятся. Какой путь пролетела ласточка, если скорость ее движения 50 км/ч, а расстояние между городами 100 км? Временем разворота ласточки можно пренебречь.

ОТВЕТ: 200 км.

Алгоритм решения задач на движение

При решении других задач прямолинейного равномерного движения в общем виде нужно придерживаться следующего алгоритма: 1) выбрать систему отсчёта; 2-3) определить начальные координаты и значения скоростей движения тел в этой системе отсчёта; 4) записать зависимости координат тел от времени; 5) записать в виде уравнения условие задачи; 6) объединить уравнения; 7) решить эти уравнения; 8) провести анализ полученного результата (после чего выяснить, имеет ли полученный результат физический смысл); 9) если в условии задачи даны числовые значения, необходимо подставить их в полученное выражение и получить числовой ответ.

Анализ полученного результата заключается в исследовании зависимости искомой величины от входящих в ответ величин.

Не стоит забывать и про направление движения в зависимости от типа задачи (встреча, погоня, обгон, отставание)

Задачи на движение направление

Конспект урока «Задачи на движение с решением».

Задача на определение среднего и мгновенного ускорения

Известно, что тело движется по сложной траектории. Его мгновенная скорость меняется по времени следующим образом:

Чему равно мгновенное ускорение тела в момент t=3 (секунды)? Найти среднее ускорение за промежуток времени от двух до четырех секунд.

На первый вопрос задачи ответить несложно, если вычислить производную от функции v(t). Получаем:

а = |3*t2 — 3|t=2 = 24 м/с2.

Для определения среднего ускорения, следует воспользоваться таким выражением:

a = (v2 — v1)/(t2 — t1);

а = ((10 — 3*4 + 43) — (10 — 3*2 + 23))/2 = 25 м/c2.

Из расчетов следует, что среднее ускорение немного превышает мгновенное в середине рассмотренного временного промежутка.

Мгновенная и средняя скорость

В этом параграфе мы будем рассматривать неравномерное движение. Однако при этом нам пригодится то, что мы знаем о прямолинейном равномерном движении.

На рисунке 4.1 показаны положения разгоняющегося автомобиля на прямом шоссе с интервалом времени 1 с. Стрелка указывает на зеркальце заднего вида, положение которого мы рассмотрим далее более подробно.
Неравномерное движение

Мы видим, что за равные интервалы времени автомобиль проходит разные пути, то есть движется неравномерно.

Уменьшим теперь последовательные интервалы времени в 20 раз – до 0,05 с – и проследим за изменением положения автомобиля в течение половины секунды (это нетрудно сделать, например, с помощью видеосъемки).

Читайте так же:
Как подключить USB веб камеру к компьютеру?

Чтобы не загромождать рисунок 4.2, на нем изображены только два положения автомобиля с промежутком времени 0,5 с. Последовательные положения автомобиля с интервалом 0,05 с отмечены положением его зеркальца заднего вида (показано красным цветом).
Мгновенная скорость

Мы видим, что когда последовательные равные промежутки времени достаточно малы, то пути, проходимые автомобилем за эти промежутки времени, практически одинаковы. А это означает, что движение автомобиля в течение столь малых промежутков времени можно с хорошей точностью считать прямолинейным равномерным.

Оказывается, этим замечательным свойством обладает любое движение (даже криволинейное): если рассматривать его за достаточно малый промежуток времени Δt, оно очень похоже на прямолинейное равномерное движение! Причем чем меньше промежуток времени, тем больше это сходство.

Скорость тела за достаточно малый промежуток времени и называют его скоростью в данный момент времени t, если этот момент времени находится в промежутке Δt. А более точное ее название – мгновенная скорость.

Насколько малым должен быть промежуток времени Δt, чтобы в течение этого промежутка движение тела можно было считать прямолинейным равномерным, зависит от характера движения тела.

В случае разгона автомобиля это доли секунды. А, например, движение Земли вокруг Солнца можно с хорошей точностью считать прямолинейным и равномерным даже в течение суток, хотя Земля за это время пролетает в космосе больше двух с половиной миллионов километров!

Говоря далее о скорости, мы будем (если это особо не оговорено) подразумевать обычно мгновенную скорость.

? 1. По рисунку 4.2 определите мгновенную скорость автомобиля. Длину автомобиля примите равной 5 м.

Значение мгновенной скорости автомобиля показывает спидометр (рис. 4.3).
Спидометр

Как найти мгновенную скорость по графику зависимости координаты от времени

На рисунке 4.4 изображен график зависимости координаты от времени для автомобиля, который движется по прямолинейному шоссе.
График зависимости координаты от времени

Мы видим, что он движется неравномерно, потому что график зависимости его координаты от времени – это кривая, а не отрезок прямой.

Покажем, как определить по этому графику мгновенную скорость автомобиля в какой-либо момент времени – скажем, при t = 3 с (точка на графике).

Для этого рассмотрим движение автомобиля за столь малый промежуток времени, в течение которого его движение можно считать прямолинейным равномерным.

На рисунке 4.5 показан интересующий нас участок графика при десятикратном увеличении (см., например, шкалу времени).
Увеличенный график зависимости координаты от времени

Мы видим, что этот участок графика практически неотличим от отрезка прямой (красный отрезок). За последовательные равные промежутки времени по 0,1 с автомобиль проходит практически одинаковые расстояния – по 1 м.

2. Чему равна мгновенная скорость автомобиля в момент t = 3 с?

Возвращаясь к прежнему масштабу чертежа, мы увидим, что прямая красного цвета, с которой практически совпадал малый участок графика, – касательная к графику зависимости координаты от времени в данный момент времени (рис. 4.6).
Касательная к графику зависимости координаты от времени

Итак, о мгновенной скорости тела можно судить по угловому коэффициенту касательной к графику зависимости координаты от времени: чем больше угловой коэффициент касательной, тем больше скорость тела. (Описанный способ определения мгновенной скорости с помощью касательной к графику зависимости координаты от времени связан с понятием производной функции. Это понятие вы будете изучать в курсе «Алгебра и начала аиализа».) А в тех точках графика, где угол наклона касательной равен нулю, то есть касательная параллельна оси времени t, мгновенная скорость тела равна нулю.

? 3. Рассмотрите рисунок 4.6.
а) В каких точках графика угол наклона касательной наибольший? наименьший?
б) Найдите наибольшую и наименьшую мгновенную скорость автомобиля в течение первых 6 с его движения.

2. Средняя скорость

Во многих задачах используют среднюю скорость, связанную с пройденным путем:

Определенная таким образом средняя скорость является скалярной величиной, так как путь – это скалярная величина. (Иногда во избежание недоразумений ее называют средней путевой скоростью.)

Например, если автомобиль в течение трех часов проехал по городу 120 км (при этом он мог разгоняться, тормозить и стоять на перекрестках), то его средняя скорость равна 40 км/ч.

? 4. Насколько уменьшится средняя скорость только что упомянутого автомобиля, если из-за остановок в пробках общее время движения увеличится на 1 ч?

Читайте так же:
Как включить приставку Xbox 360?

Средняя скорость на двух участках движения

Во многих задачах рассматривается движение тела на двух участках, на каждом из которых движение можно считать равномерным. В таком случае, согласно определению средней скорости (1), можно записать:

где l1 и t1 – путь и время для первого участка, а l2 и t2 – для второго. Рассмотрим примеры.
Саша выехал из поселка на велосипеде со скоростью 15 км/ч и ехал в течение часа. А потом велосипед сломался, и Саша еще час шел пешком со скоростью 5 км/ч.

? 5. Найдите:
а) путь, пройденный Сашей за все время движения;
б) общее время движения Саши;
в) среднюю скорость Саши.

В рассмотренном случае средняя скорость оказалась равной среднему арифметическому скоростей, с которыми Саша ехал и шел. Всегда ли это справедливо? Рассмотрим следующий пример.
Пусть Саша ехал на велосипеде в течение часа со скоростью 15 км/ч, а потом прошел такое же расстояние пешком со скоростью 5 км/ч.

? 6. Найдите:
а) путь, который Саша прошел пешком;
б) путь, пройденный Сашей за все время движения;
в) общее время движения Саши;
б) среднюю скорость Саши.

Рассмотрев этот случай, вы увидите, что на этот раз средняя скорость не равна среднему арифметическому скоростей езды и ходьбы. А если присмотреться еще внимательнее, то можно заметить, что во втором случае средняя скорость меньше, чем в первом. Почему?

? 7. Сравните промежутки времени, в течение которых Саша ехал и шел пешком в первом и втором случаях.

Обобщим рассмотренные выше ситуации.

Рассмотрим сначала случай, когда тело двигалось с разными скоростями в течение равных промежутков времени.

Пусть первую половину всего времени движения тело двигалось со скоростью v1, а вторую половину – со скоростью v2. Можно ли найти среднюю скорость движения на всем участке, если не известны ни общее время движения, ни путь, пройденный телом за все время движения?

Можно: для этого введем обозначения для всех нужных нам величин независимо от того, известны они или неизвестны. Это распространенный прием при решении многих задач.

Обозначим все время движения t, весь путь l, а пути, пройденные за первую и вторую половину времени движения, обозначим соответственно) l1 и l2.

? 8. Выразите через v1, v2 и t:
a) l1 и l2; б) l; в) среднюю скорость.

Найдя ответы на эти вопросы, вы узнаете, справедливо ли в общем случае утверждение: если тело двигалось на двух участках с разными скоростями в течение равных промежутков времени, то его средняя скорость на всем пути равна среднему арифметическому скоростей движения на двух участках.

Рассмотрим теперь случай, когда тело двигалось с разными скоростями первую и вторую половину пути.

Пусть теперь первую половину всего пути тело двигалось со скоростью v1, а вторую половину – со скоростью v2. Обозначим снова все время движения t, весь путь l, а промежутки времени, в течение которых тело двигалось на первом и втором участке, обозначим соответственно t1 и t2.

? 9. Выразите через v1, v2 и l:
а) t1 и t2; б) t; в) среднюю скорость.

Ответив на эти вопросы, вы узнаете, справедливо ли в общем случае утверждение: если тело двигалось на двух участках равной длины с разными скоростями, то его средняя скорость на всем пути не равна среднему арифметическому этих скоростей.

? 10. Докажите, что средняя скорость тела, которое двигалось на двух участках равной длины с разными скоростями, меньше, чем если бы оно двигалось на двух участках с теми же скоростями в течение равных промежутков времени.
Подсказка. Выразите для каждого из двух случаев среднюю скорость через скорости на первом и втором участках и сравните полученные выражения.

? 11. На первом участке пути тело двигалось со скоростью v1, а на втором – со скоростью v2. Чему равно отношение длин этих участков, если средняя скорость движения оказалась равной среднему арифметическому v1 и v2?

Дополнительные вопросы и задания

12. Одну треть всего времени движения поезд ехал со скоростью v1, а оставшееся время – со скоростью v2.
а) Выразите пройденный поездом путь через v1, v2 и все время движения t.
б) Выразите среднюю скорость поезда через v1 и v2.
в) Найдите числовое значение средней скорости при v1 = 60 км/ч, v2 = 90 км/ч.

13. Автомобиль ехал три четверти всего пути со скоростью v1, а оставшийся участок пути – со скоростью v2.
а) Выразите все время движения автомобиля через v1, v2 и весь пройденный путь l.
б) Выразите среднюю скорость движения автомобиля через v1 и v2.
в) Найдите числовое значение средней скорости при v1 = 80 км/ч, v2 = 100 км/ч.

Читайте так же:
Как настроить приложение Remote Desktop?

14. Автомобиль ехал 2 ч со скоростью 60 км/ч. Сколько времени после этого он должен ехать со скоростью 80 км/ч, чтобы его средняя скорость на всем пути стала равной 66,7 км/ч?

15. Перенесите в тетрадь (по клеточкам) график зависимости координаты автомобиля от времени, изображенный на рисунке 4.4. Считайте, что автомобиль едет вдоль оси x.
а) Определите графически среднюю скорость за 6 с.
б) Используя касательную, определите, в какие примерно моменты времени мгновенная скорость автомобиля была равна его средней скорости за 6 с.

16. Тело движется вдоль оси x. Зависимость координаты тела от времени выражается формулой x = 0,2 * t 2 .
а) Выберите удобный масштаб и изобразите график зависимости x(t) в течение первых 6 с.
б) С помощью этого графика найдите момент времени, в который мгновенная скорость тела была равна средней скорости за все время движения.

FAQ (скорость):

Как вы рассчитываете скорость (с примером)?

Чтобы вычислить скорость, вы должны разделить расстояние на время, которое требуется, чтобы пройти то же самое расстояние, совсем на следующем, вы должны добавить к нему свое направление. Наш скоростной искатель также определяет скорость таким же образом.

Например:

Если вы проехали 50 миль в течение 1 часа, двигаясь на запад, то говорят, что ваша скорость составляет 50 миль в час на запад или 50 миль в час на запад.

Как вы находите скорость с расстоянием и временем?

Все, что вам нужно, чтобы вставить значения в вышеупомянутый калькулятор скорости и времени, чтобы найти скорость с расстоянием и временем.

  • Прежде всего, вы должны нажать на «вкладку ускорения»
  • Совсем скоро вы должны выбрать опцию «конечная скорость» из выпадающего меню финала конвертер скорости
  • Затем вы должны ввести значение начальной скорости в указанное поле
  • Сразу после этого вы должны ввести значение ускорения в данное поле

Наконец, вы должны ввести значение времени в указанное поле, затем, нажав кнопку «Рассчитать», калькулятор окончательной скорости мгновенно вычислит конечную скорость для заданных входных данных.

Может ли скорость быть отрицательной?

Непосредственно – да, скорость может быть отрицательной. Объект, который движется в отрицательном направлении, обозначен как отрицательная скорость. И, если объект ускоряется, то его ускорение – это то, что направлено в том же направлении, что и его движение (в таком случае это называется отрицательным ускорением).

Как найти начальную скорость?

Если вы хотите мгновенно рассчитать начальную скорость, то все, что вам нужно, это вставить значения в вышеуказанную начальную конвертер скорости. И, если вы хотите сделать это вручную, используйте приведенную ниже формулу начальной скорости:

Начальная формула скорости:

Начальная скорость = конечная скорость – (ускорение × время)

Читай дальше!

Прежде всего, вы должны выяснить, какое из смещения (S), конечной скорости (Vf), ускорения (A) и времени (T) вы должны решить для начальной скорости (vi)

  • Если у вас есть Vf, A и T, то вы должны использовать Vi = Vf – AT
  • Если у вас есть S, Vf и T, то вы должны использовать Vi = 2 (S / T) – Vf
  • Если у вас есть S, Vf и A, то вы должны использовать Vi = квадратный корень из (Vf ^ 2 – 2AS)
  • Если у вас есть S, A и T, то вы должны использовать Vi = (S / T) – (AT / 2)

Как найти конечную скорость?

Попробуйте приведенный выше финал калькулятор скорости, чтобы выполнить мгновенные вычисления. Если вы хотите сделать это самостоятельно, то вам следует использовать данную формулу окончательной скорости.

S = UT + 1/2 AT ^ 2

V ^ 2 = U ^ 2 + 2AS

Читай дальше!

Прежде всего, выясните, какую из начальной скорости (U), времени ускорения (A) (T) и смещения (S) вы должны решить для конечной скорости.

  • Если у вас есть U, A и T, то вы должны использовать V = U + AT
  • Если у вас есть S, U и T, то вам следует попробовать V = 2 (S / T) – U
  • Если у вас есть S, U и A, то вы должны использовать V = квадратный корень (U ^ 2 + 2AS)
  • Если у вас есть S, A и T, то вы должны использовать V = (S / T) + (AT / 2)

Что вызывает изменение скорости?

Эксперты изображают, что силы – это то, что влияет на движение объектов – они могут вызывать движение, также они могут останавливаться, замедляться или даже изменять направление движения объекта калькулятор скорости. Поскольку сила вызывает изменения в скорости или направлении объекта, говорят, что силы вызывают изменения в скорости. Помните, что ускорение называется изменением скорости.

Читайте так же:
Что сделать чтобы уйти с биржи труда?

Конец Примечание:

Имейте в виду, что скорость зависит от расстояния, а когда речь идет о скорости, она зависит от смещения – несомненно, эти две величины фактически одинаковы (даже имеют одинаковую величину), когда интервал времени мал. Используйте вышеупомянутый инструмент, чтобы понять, как вычислить скорость и даже решить ваши физические уравнения в мгновение ока!

Физика 7 класс. Решение задач по теме «Неравномерное прямолинейное движение»

неравном движ

Для решения задач на неравномерное движение нам потребуется знание того, что: Средняя скорость при неравномерном движении равна отношению отрезков пути ко времени, за которое они были пройдены.

Начинаем, как всегда, с самого простого:

«Пешеход шел 1 ч со скоростью 4 км/ч, а потом 1 ч ехал на велосипеде со скоростью 16 км/ч. Какова средняя скорость на всем пути? «

Имеем два отрезка пути 1) 1 ч * 4 км/ч 2) 1 ч * 16 км/ч средняя скорость будет равна: (1*4+1*16)/(1+1)= 10 км/ч Ответ: 10 м/с
Самые простые задачи сводятся к подставлению известных значений в формулу. Не будем на этом задерживаться.

«Вагон, двигаясь равномерно под уклон, проходит 120 м за 10 с. Скатившись с горки, он проходит до полной остановки еще 360 м за 1,5 мин. Определите среднюю скорость вагона за все время движения.»

Единственное, что может затруднить Вас в решении подобных задач — езда под уклоном. Траектория движения тела НЕ ВЛИЯЕТ на его среднюю скорость.
Все остальное решаем по формуле, предварительно переведя 1,5 минуты в 90 секунд. Средняя скорость = (120 + 360)/(90+10)= 4,8 м/с Ответ: 4,8 м/с

Похожая задачка: «Автомобиль проехал 200 км за 7 ч, а затем 5 ч ехал со скоростью 80 км/ч. Определите среднюю скорость автомобиля на всем пути.»

Пути будут следующие: 1) 200 км 2) 80 км/ч * 5 ч= 400 км Находим среднюю скорость: (200+400)/(5+7)= 50 км/ч Ответ: 50 км,ч

Задачи средней сложности:

«За первые 3 ч пешеход прошел 12 км, в следующие 2 ч его скорость составляла 3 км/ч, последний час он двигался со скоростью 2 км/ч. Определите среднюю скорость движения пешехода на всем пути.»

Пути пешехода: 1) 12 км 2) 2 ч* 3 км/ч = 6 км 3) 1 ч * 2 км/ч= 2 км Средняя скорость: (12+6+2)/(3+2+1)= 3,333333 км/ч = 3,3 км/ч Ответ: 3,3 км/ч

«Турист ехал на велосипеде 1 ч со скоростью 10 км/ч, затем 0,5 ч отдыхал, потом за 1,5 ч прошел 7,5 км пешком. Найдите среднюю скорость туриста на всем пути. «

Так как не сказано, нужно ли учитывать время остановки, то оно учитывается, но путь буден равен нулю. Пути пешехода таковы: 1) 1 ч* 10 км/ч= 10 км 2) 7,5 км Средняя скорость: (10+0+7,5)/(1+0,5+1,5)= 5,83333 км/ч= 5,83 км,ч Ответ: 5,83 км/ч

Задачи высокой сложности:
«Из одного пункта в другой мотоциклист двигался со скоростью 60 км/ч, а обратный путь им проделан со скоростью 10 м/с. Определите среднюю скорость мотоциклиста за все время движения.»

уравнение для средней скорости

Для начала переведем 10 м/с в 36 км/ч
Мы не знаем путь, но можем записать формулу средней скорости, выразив путь туда как S, весь путь 2S. Тогда время движения туда S/(60 км/ч), а время движения обратно S/(36 км/ч). [center]Вынесем S и сократим его. Получаем уравнение следующего вида :[/center]

Проводим расчет и получаем, что средняя скорость равна 45 км/ч Ответ: 45 км/ч

«Первую половину пути автомобиль шел со скоростью в 8 раз большей, чем вторую. Средняя скорость автомобиля на всем пути равна 16 км/ч. Определите скорость автомобиля на второй половине пути »

2задача на ср скор

Запишем уравнение, аналогичное предыдущему, только с неизвестной скоростью, но известной ср. скоростью, сократим S и получим уравнение с одной неизвестной: [center]
Решим его и получим, что скорость на второй половине пути равна 9 км/ч Ответ: 9 км/ч

Итак, мы решили основные задачи на неравномерное движение. Если у Вас есть вопросы по разбору пишите в комментарии, а если Вы не можете решить задачу, раздел «Отправить задачу» Вам в помощь!

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector