1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Равномерное механическое движение. Равномерное движение и его график

Равномерное механическое движение. Равномерное движение и его график

Простейшим видом движения является равномерное движение. Его можно зафиксировать тогда, когда ускорение тела в любой момент времени будет равно нулю. Другими словами, равномерное движение представляют в виде определенного идеального положения тела, когда его скорость будет одной и той же в любой момент времени. При прохождении тела равных промежутков расстояния за одинаковые промежутки времени движение приобретает признаки равномерного прямолинейного передвижения. В реальной жизни подобные характеристики практически не встречаются.

Путь – длина траектории, по которой в течение определенного промежутка времени двигалось конкретное тело.

Перемещение – расстояние между начальной и конечной точкой траектории движения тела.

Путь и перемещение – это разные понятия, так как путь является скалярной величиной, а перемещение – векторной величиной. При этом модуль вектора перемещения равняется отрезку, соединяющего начальную и конечную точку траектории движения тела.

AIDA64

Начнем с одной из самых известных и комплексных программ для получения информации о компонентах системы, проверке стабильности и тесте производительности. Конечно же, это AIDA64. Интерфейс программы предельно понятен и прост, все разделено на группы.

В данной программе можно узнать подробную информацию о каждом компоненте системы, температуре и аппаратных частях компьютера. Есть тесты, показывающие производительность отдельных компонентов при выполнении различных операций.

Также вы можете сравнить производительность своих комплектующих с уже протестированными.

Помимо этого, в программе имеются различные тесты на проверку стабильности компонентов компьютера.

Программа OCCT предназначена для комплексной проверки комплектующих компьютера на стабильность (CPU, GPU, RAM, Power).

Помимо наборов тестов, программа отображает общую информацию о компонентах и позволяет мониторить температуру, энергопотребление и многое другое.

Известная, а главное, полностью бесплатная программа CPU-Z,в которой можно посмотреть подробную информацию о процессоре, материнской плате, оперативной памяти и видеокарте. Тут также присутствует тест производительности процессора для сравнения с наиболее популярными моделями.

Есть возможность проверки процессора на стабильность, однако лучше это делать сторонними программами. Как, например, Linx, Prime95 или упомянутые ранее AIDA64 и OCCT.

Работает по аналогии с CPU-Z, только все заточено на работу с видеокартами. Поможет досконально узнать все про аппаратные характеристики видеокарты и информацию, зашитую в биос.

Также есть возможность мониторить параметры видеокарты: частоту, температуру, потребление напряжения и другое.

Есть возможность проверки на стабильность, но, как и с CPU-Z, имеются специальные программы, которые справляются с этим намного лучше. Например, MSI Kombustor.

Техническая механика

В предыдущей статье движение тела или точки определено, как изменение положения в пространстве с течением времени. Для того чтобы более полно охарактеризовать качественные и количественные стороны движения введены понятия скорости и ускорения.

Скорость – это кинематическая мера движения точки, характеризующая быстроту изменения ее положения в пространстве.
Скорость является векторной величиной, т. е. она характеризуется не только модулем (скалярной составляющей), но и направлением в пространстве.

что такое скорость и ускорение точки?

Как известно из физики, при равномерном движении скорость может быть определена длиной пути, пройденного за единицу времени: v = s/t = const (предполагается, что начало отсчета пути и времени совпадают).
При прямолинейном движении скорость постоянна и по модулю, и по направлению, а ее вектор совпадает с траекторией.

Читайте так же:
Как очистить стол от лака для ногтей?

Единица скорости в системе СИ определяется соотношением длина/время, т. е. м/с .

Очевидно, что при криволинейном движении скорость точки будет меняться по направлению.
Для того, чтобы установить направление вектора скорости в каждый момент времени при криволинейном движении, разобьем траекторию на бесконечно малые участки пути, которые можно считать (вследствие их малости) прямолинейными. Тогда на каждом участке условная скорость vп такого прямолинейного движения будет направлена по хорде, а хорда, в свою очередь, при бесконечном уменьшении длины дуги ( Δs стремится к нулю), будет совпадать с касательной к этой дуге.
Из этого следует, что при криволинейном движении вектор скорости в каждый момент времени совпадает с касательной к траектории (рис. 1а) . Прямолинейное движение можно представить, как частный случай криволинейного движения по дуге, радиус которой стремится к бесконечности (траектория совпадает с касательной) .

При неравномерном движении точки модуль ее скорости с течением времени меняется.
Представим себе точку, движение которой задано естественным способом уравнением s = f(t) .

вектор скорости

Если за небольшой промежуток времени Δt точка прошла путь Δs , то ее средняя скорость равна:

Средняя скорость не дает представления об истинной скорости в каждый данный момент времени (истинную скорость иначе называют мгновенной). Очевидно, что чем меньше промежуток времени, за который определяется средняя скорость, тем ближе ее значение будет к мгновенной скорости.

Истинная (мгновенная) скорость есть предел, к которому стремится средняя скорость при Δt, стремящемся к нулю :

v = lim vср при t→0 или v = lim (Δs/Δt) = ds/dt .

Таким образом, числовое значение истинной скорости равно v = ds/dt .
Истинная (мгновенная) скорость при любом движении точки равна первой производной координаты (т. е. расстояния от начала отсчета перемещения) по времени.

При Δt стремящемся к нулю, Δs тоже стремится к нулю, и, как мы уже выяснили, вектор скорости будет направлен по касательной (т. е. совпадает с вектором истинной скорости v ). Из этого следует, что предел вектора условной скорости vп , равный пределу отношения вектора перемещения точки к бесконечно малому промежутку времени, равен вектору истинной скорости точки.

Ускорение точки в прямолинейном движении

В общем случае движение точки с изменяющейся во времени скоростью называют ускоренным, при этом считая ускорение, вызывающее уменьшение скорости, отрицательным. Иногда движение, в котором скорость с течением времени уменьшается, называют замедленным.

Ускорение есть кинематическая мера изменения скорости точки во времени. Другими словами — ускорение — это скорость изменения скорости.
Как и скорость, ускорение является величиной векторной, т. е. характеризуется не только модулем, но и направлением в пространстве.

При прямолинейном движении вектор скорости всегда совпадает с траекторией и поэтому вектор изменения скорости тоже совпадает с траекторией.

Из курса физики известно, что ускорение представляет собой изменение скорости в единицу времени. Если за небольшой промежуток времени Δt скорость точки изменилась на Δv , то среднее ускорение за данный промежуток времени составило: аср = Δv/Δt .

Читайте так же:
Где производятся автомобили Volkswagen?

Среднее ускорение не дает представление об истинной величине изменения скорости в каждый момент времени. При этом очевидно, что чем меньше рассматриваемый промежуток времени, во время которого произошло изменение скорости, тем ближе значение ускорения будет к истинному (мгновенному).
Отсюда определение: истинное (мгновенное) ускорение есть предел, к которому стремится среднее ускорение при Δt , стремящемся к нулю:

а = lim аср при t→0 или lim Δv/Δt = dv/dt .

Учитывая, что v = ds/dt , получим: а = dv/dt = d 2 s/dt 2 .

Истинное ускорение в прямолинейном движении равно первой производной скорости или второй производной координаты (расстояния от начала отсчета перемещения) по времени.

Единица ускорения — метр, деленный на секунду в квадрате ( м/с 2 ).

Ускорение точки в криволинейном движении

При движении точки по криволинейной траектории скорость меняет свое направление, т. е вектор скорости является переменной величиной.

Представим себе точку М , которая за время Δt , двигаясь по криволинейной траектории, переместилась в положение М1 (рис. 1) .

ускорение при криволинейном движении

Вектор приращения (изменения) скорости обозначим Δv , тогда: Δv = v1 – v .

Для нахождения вектора Δv перенесем вектор v1 в точку М и построим треугольник скоростей. Определим вектор среднего ускорения:

Вектор аср параллелен вектору Δv , так как от деления векторной величины на скалярную направление вектора не меняется.
Вектор истинного ускорения есть предел, к которому стремится отношение вектора приращения скорости к соответствующему промежутку времени, когда последний стремится к нулю:

а = lim Δv/Δt при t→0 .

Такой предел называют векторной производной.
Таким образом, истинное ускорение точки в криволинейном движении равно векторной производной скорости по времени .

Из рисунка 1 видно, что вектор ускорения в криволинейном движении всегда направлен в сторону вогнутости траектории.

Так как векторную производную непосредственно вычислять мы не умеем, то ускорение в криволинейном движении будем определять косвенными методами. Так, например, если движение точки задано естественным способом, то применяется теорема о проекции ускорения на касательную и нормаль. Чтобы понять суть этой теоремы, следует рассмотреть понятие кривизны кривых линий.

Понятие о кривизне кривых линий

Рассмотрим криволинейную траекторию точки М (рис. 2а) .
Угол Δφ между касательными к кривой в двух соседних точках называется углом смежности .

понятие кривизны кривой линии и радиуса кривизны

Кривизной кривой в данной точке называется предел отношения угла смежности Δφ к соответствующей длине Δs дуги, когда последняя стремится к нулю.
Обозначим кривизну буквой k , тогда:

k = lim Δφ/Δs при Δs → 0 .

Рассмотрим окружность радиуса R (см. рисунок 2б) .
Так как Δs = RΔφ , то:

k = lim Δφ/Δs = lim Δφ/RΔs = 1/R (при Δs → 0) .

Следовательно, кривизна окружности во всех точках одинакова и равна k = 1/R .

Для каждой точки данной кривой можно подобрать такую окружность, кривизна которой равна кривизне кривой в данной точке. Радиус ρ такой окружности называется радиусом кривизны кривой в данной точке, а центр этой окружности – центром кривизны .

Итак, кривизна кривой в данной точке есть величина, обратная радиусу кривизны в данной точке :

Читайте так же:
Как включить дальний свет Шкода Рапид?

Очевидно, что кривизна прямой линии будет равна нулю, а поскольку радиус кривизны такой линии равен бесконечности.

Теорема о проекции ускорения на касательную и нормаль

Проекция ускорения на касательную к траектории называется касательным (тангенциальным) ускорением, а проекция ускорения на нормаль к этой касательной – нормальным ускорением.

Теорема: нормальное ускорение равно квадрату скорости, деленному на радиус кривизны траектории в данной точке; касательное ускорение – первой производной от скорости по времени .

Доказательство этой теоремы основывается на геометрических построениях с учетом приведенных ранее зависимостей перемещения, скорости и ускорения от времени. В данной статье доказательство теоремы не приводится; при необходимости, его можно рассмотреть в других источниках информации.

Итак, на основании теоремы об ускорениях, можно записать:

ап = v 2 /ρ; aτ = dv/dt .

Анализируя формулы касательного и нормального ускорения можно сделать вывод, что касательное ускорение характеризует изменение скорости только по модулю, а нормальное – только по направлению.

Зная величину нормального и касательного ускорения, можно вычислить полное ускорение точки, применив теорему Пифагора:

Направление ускорения: cos (aτ,a) = аτ/а .

Часто касательное и нормальное ускорения рассматривают не как проекции, а как составляющие полного ускорения, т. е. как векторные величины.

Вектор нормального ускорения всегда направлен к центру кривизны, поэтому нормальное ускорение иногда называют центростремительным .

Виды движения точки в зависимости от ускорения

Анализируя формулы касательного и нормального ускорений, можно выделить следующие виды движения точки:

ап = v 2 /ρ ≠ 0; aτ = dv/dt ≠ 0 , — неравномерное криволинейное (рис. 3а) ;

ап = v 2 /ρ ≠ 0; aτ = dv/dt = 0 , — равномерное криволинейное (рис. 3б) ;

ап = v 2 /ρ = 0; aτ = dv/dt ≠ 0 , — неравномерное прямолинейное (рис. 3в) ;

aτ = dv/dt = const ≠ 0; ап = v 2 /ρ ≠ 0 , — равнопеременное криволинейное (рис. 3г) ;

aτ = dv/dt = const ≠ 0, ап = v 2 /ρ = 0 , — равнопеременное прямолинейное (рис. 3д) ;

ап = v 2 /ρ = 0; aτ = dv/dt = 0 , — равномерное прямолинейное (движение без ускорения) (рис. 3е) .

виды движения точки с ускорением

Теоремы о проекциях скорости и ускорения на координатную ось

Если движение точки задано координатным способом, то путь (перемещение), скорость и ускорение за промежуток времени Δt можно найти, используя проекции этих величин на координатную ось. Очевидно, что приращение любой из координат при Δt стремящемся к нулю тоже стремится к нулю, и предел такого приращения может быть определен из дифференциальных отношений, устанавливаемых теоремами о проекциях скорости и ускорения:

Теорема: проекция скорости на координатную ось равна первой производной от соответствующей координаты по времени :

Теорема: проекция ускорения на координатную ось равна второй производной от соответствующей координаты по времени :

ax = d 2 x/Δt 2 ay = d 2 y/Δt 2 az = d 2 z/Δt 2 .

Зная проекции скорости или ускорения на координатные оси, можно определить модуль и направление вектора любой из этих величин, используя теорему Пифагора и тригонометрические соотношения.

График повышения скорости чтения

Как повысить скорость чтения у учеников начальной школы? Нужно много читать, но этого не всегда достаточно. Нужно заинтересовать ученика в улучшении своей техники чтения.

Читайте так же:
Где находится бачок для омывателя?

В начальной школе, а в старших классах тем более, успешность ребенка в учебе во многом зависит от скорости чтения.

Ведь так часто бывает, ваш ребенок получил плохую оценку по математике не потому, что не знал как решать задачи, а потому что не успел их прочитать за отведенное учителем время. Поэтому, чтобы выросший ребенок не задавал потом вопрос как защитить диплом если ничего не знаешь, обратите внимание на выработку скорости чтения.

Технику чтения в младших классах проверяют регулярно и даже есть нормативы, в которые ребенок должен укладываться.

Техника чтения во 2 классе по ФГОС должна иметь следующие ориентировочные показатели:

  • В 1 полугодии — 40-50 слов в минуту
  • Во 2 полугодии — 50-60 слов в минуту.

Но как ребенка заинтересовать в улучшении скорости чтения?

Существует много методик. Но самая простая — соревнования с самим собой.

Распечатайте на большом листике вот такой график повышения скорости чтения, повесьте его на стену над рабочим местом вашего ребенка и регулярно его заполняйте.

Давайте разберемся, что есть на графике.

По горизонтали пишем даты проверки. Лучше всего, если проверки будут регулярными — раз в два-три дня.

По вертикали откладываем количество слов, прочитанных за минуту.

На листике два графика — красный и синий. Красный — скорость чтения. Синий — «горизонт».

Красный график — средняя скорость чтения (количество слов в минуту)

Необходимо читать 5 раз по 1 минуте 5 разных отрывков текста.

Можно просто взять один рассказ и читать его. Прочитал 1 минуту. Остановился. Посчитали количество слов. Читает дальше опять одну минуту.

Но лучше специально подбирать и легкие, и сложные тексты. В легком ребенок прочтет больше слов, в тяжелом — меньше.

Количество прочитанных за минуту слов вносим вот в такую табличку. В конце высчитываем среднее значение.

После этого ставим точку на графике скорости чтения. Выставляем именно среднее значение.

Определяем «горизонт»

«Горизонт» — это максимально возможная скорость чтения ребенком знакомого текста.

Ребенок читает пять раз по минуте один и тот же текст. (Естественно, для следующей проверки берется новый текст)

Количество прочитанных слов заносится в табличку. Но в график выставляется не среднее значение, а максимальное.

Это планка, до которой ребенок может уже сейчас «дотянуться».

Синий график повышает уверенность ребенка в своих силах и дает толчок для дополнительных занятий.

Скачать график: grafic.zip [61,34 Kb] (cкачиваний: 276)

Уважаемые читатели!

Все материалы с сайта можно скачивать абсолютно бесплатно. Все материалы проверены антивирусом и не содержат скрытых скриптов.

Материалы в архиве не помечены водяными знаками!

Если материал нарушает чьи-то авторские права, просьба написать нам по обратной связи, указав авторство материала. Мы обязуемся либо убрать материал, либо указать прямую ссылку на автора.

Сайт пополняется материалами на основе бесплатной работы авторов. Eсли вы хотите отблагодарить их за работу и поддержать наш проект, вы можете перевести любую, не обременительную для вас сумму на счет сайта.
Заранее Вам спасибо.

Читайте так же:
Как подключить Bluetooth наушники к Xiaomi?

Равноускоренное движение

Равноускоренное движение — это движение с ускорением, вектор которого не меняется по модулю и направлению. Примеры такого движения: велосипед, который катится с горки; камень брошенный под углом к горизонту.

Рассмотрим последний случай более подробно. В любой точке траектории на камень действует ускорение свободного падения g → , которое не меняется по величине и всегда направлено в одну сторону.

Движение тела, брошенного под углом к горизонту, можно представить в виде суммы движений относительно вертикальной и горизонтальной осей.

Формула скорости в конце пути

Вдоль оси X движение равномерное и прямолинейное, а вдоль оси Y — равноускоренное и прямолинейное. Будем рассматривать проекции векторов скорости и ускорения на оси.

Основной единицей измерения скорости в системе СИ является: [v]=м/с 2

Задание. Движение материальной точки А задано уравнением: $x=2 t^<2>-4 t^<3>$ . Точка начала свое движение при t=0 c.Как будет двигаться рассматриваемая точка по отношению к оси X в момент времени t=0,5 с.

Решение. Найдем уравнение, которое будет задавать скорость рассматриваемой материальной точки, для этого от функции x=x(t), которая задана в условиях задачи, возьмем первую производную по времени, получим:

Для определения направления движения подставим в полученную нами функцию для скорости v=v(t) в (1.1) указанный в условии момент времении сравним результат с нулем:

Так как мы получили, что скорость в указанный момент времени отрицательна, следовательно, материальная точка движется против оси X.

Ответ. Против оси X.

Формула скорости не по зубам? Тебе ответит эксперт через 10 минут!

Задание. Скорость материальной точки является функцией от времени вида:

где скорость в м/с, время в c. Какова координата точки в момент времени равный 10 с, в какой момент времени точка будет на расстоянии 10 м от начала координат? Считайте, что при t=0 c точка началадвижение из начала координат по оси X.

Решение. Точка движется по оси X, cвязь координаты x и скорости движения определена формулой:

Для ответа на первый вопрос задачи подставим в выражение (2.1) время t=10 c, имеем:

Для того чтобы определить в какой момент времени точка будет находиться на расстоянии 10 м от начала координат приравняем выражение (2.1) к 10 и решим, полученное квадратное уравнение:

$ begin 10 t-t^<2>=10(2.2) \ t_<1>=5+sqrt <15>approx 8,8(c) ; t_<2>=5-sqrt <15>approx 1,13(c) end $

Рассмотрим второй вариант нахождения точки на расстоянии 10 м от начала координат, когда x=-10. Решим квадратное уравнение:

Какая средняя скорость интернета в городах России

средняя скорость мобильного и широкополосного интернета в России в 2021 году

Средний показатель скорости интернета в России (II квартал 2021 года)

Не стоит абонентам и задаваться вопросом «каково качество подключения в моём городе и насколько оно уступает скорости передачи в иных городах». Упомянутые показатели регулярно изменяются, а потому те регионы, где линия связи ещё недавно заметно превосходила подключение в иных субъектах, способны моментально отдать лидирующие позиции конкурентам. Главное, правильно изменить связь у себя.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector