2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Настройка и монтаж CAN-модуля «F5»

Настройка и монтаж CAN-модуля «F5»

Дальше вкратце рассматривается, как подключать и как настраивать универсальный модуль CAN модели Starline F5. Совместимыми будут сам модуль и любая сигнализация без процессора CAN. Проще всего, как это ни странно, выполнить подключение к CAN-шине – используется два провода, коричневый и коричнево-красный. Если в проводке автомобиля есть только один кабель, к нему подключают коричнево-красный шнур модуля. Приобретя комплект «Starline CAN F5», найдите печатный вкладыш – там приводятся все модели авто, с которыми модуль будет совместим. Прошивка обновляется и список растет.

Как работает CAN шина

Фактически, шина представляет собой компактное устройство со множеством входов для подключения кабелей или разъём, к которому подсоединяются кабели. Принцип её действия заключается в передаче сообщений между разными компонентами электронной системы.

Для передачи разной информации в сообщения включаются идентификаторы. Они уникальны и сообщают, например, что в конкретный момент времени автомобиль едет со скоростью 60 км/ч. Серия сообщения отправляется на все устройства, но благодаря индивидуальным идентификаторам они обрабатывают только те, которые предназначаются именно для них. Идентификаторы CAN-шины могут иметь длину от 11 до 29 бит.

can шина

В зависимости от назначения КАН шины разделяются на несколько категорий:

  • Силовые. Они предназначены для синхронизации и обмена данными между электронным блоком двигателя и антиблокировочной системой, коробкой передач, зажиганием, другими рабочими узлами автомобиля.
  • Комфорт. Эти шины обеспечивают совместную работу цифровых интерфейсов, которые не связаны с ходовыми блоками машины, а отвечают за комфорт. Это система подогрева сидений, климат-контроль, регулировка зеркал и т.п.
  • Информационно-командные. Эти модели разработаны для оперативного обмена информацией между узлами, отвечающими за обслуживание авто. Например, навигационной системой, смартфоном и ЭБУ.

Введение в протокол CAN

Промышленная сеть реального времени CAN представляет собой сеть с общей средой передачи данных. Это означает, что все узлы сети одновременно принимают сигналы передаваемые по шине. Невозможно послать сообщение какому-либо конкретному узлу. Все узлы сети принимают весь трафик передаваемый по шине. Однако, CAN-контроллеры предоставляют аппаратную возможность фильтрации CAN-сообщений.

Каждый узел состоит из двух составляющих. Это собственно CAN контроллер, который обеспечивает взаимодействие с сетью и реализует протокол, и микропроцессор (CPU).

Рис. 1. Топология сети CAN.

CAN контроллеры соединяются с помощью дифференциальной шины, которая имеет две линии — CAN_H (can-high) и CAN_L (can-low), по которым передаются сигналы. Логический ноль регистрируется, когда на линии CAN_H сигнал выше, чем на линии CAN_L. Логическая единица — в случае когда сигналы CAN_H и CAN_L одинаковы (отличаются менее чем на 0.5 В). Использование такой дифференциальной схемы передачи делает возможным работу CAN сети в очень сложных внешних условиях. Логический ноль — называется доминантным битом, а логическая единица — рецессивным. Эти названия отражают приоритет логической единицы и нуля на шине CAN. При одновременной передаче в шину лог. нуля и единицы, на шине будет зарегестрирован только логический ноль (доминантный сигнал), а логическая единица будет подавлена (рецессивный сигнал).

Читайте так же:
Чем отмыть гранатовый сок с дивана?

Типы сообщений сети CAN.

Данные в CAN передаются короткими сообщениями-кадрами стандартного формата. В CAN существуют четыре типа сообщений:

  • Data Frame
  • Remote Frame
  • Error Frame
  • Overload Frame

Data Frame — это наиболее часто используемый тип сообщения. Он состоит из следующих основных частей:

  • поле арбитража (arbitration field) определяет приоритет сообщения в случае, когда два или более узлов одновременно пытаются передать данные в сеть. Поле арбитража состоит в свою очередь из:
    • для стандарта CAN-2.0A, 11-битного идентификатора + 1 бит RTR (retransmit)
    • для стандарта CAN-2.0B, 29-битного идентификатора + 1 бит RTR (retransmit)

    Следует отметить, что поле идентификатора, несмотря на свое название никак не идентифицирует само по себе ни узел в сети, ни содержимое поля данных. Для Data кадра бит RTR всегда выставлен в логический ноль (доминантный сигнал).

    Рис. 2. Data frame стандарта CAN 2.0A.

    Remote Frame — это Data Frame без поля данных и с выставленным битом RTR (1 — рецессивные бит). Основное предназначение Remote кадра — это инициация одним из узлов сети передачи в сеть данных другим узлом. Такая схема позволяет уменьшить суммарный трафик сети. Однако, на практике Remote Frame сейчас используется редко (например, в DeviceNet Remote Frame вовсе не используется).

    Error Frame — это сообщение которое явно нарушает формат солобщения CAN. Передача такого сообщения приводит к тому, что все узлы сети регистрируют ошибку формата CAN-кадра, и в свою очередь автоматически передают в сеть Error Frame. Результатом этого процесса является автоматическая повторная передача данных в сеть передающим узлом. Error Frame состоит из поля Error Flag, которое состоит из 6 бит одинакового значения (и таким образом Error frame нарушает проверку Bit Stuffing, см. ниже), и поля Error Delimiter, состоящее из 8 рецессивных битов. Error Delimiter дает возможность другим узлам сети обнаружив Error Frame послать в сеть свой Error Flag.

    Overload Frame — повторяет структуру и логику работы Error кадра, с той разницей, что он используется перегруженным узлом, который в данный момент не может обработать поступающее сообщение, и поэтому просит при помощи Overload-кадра о повторной передаче данных. В настоящее время Overload-кадр практически не используется.

    Контроль доступа к среде передачи (побитовый арбитраж).

    Поле арбитража CAN-кадра используется в CAN для разрешения коллизий доступа к шине методом не деструктивного арбитража. Суть метода не деструктивного арбитража заключается в следующем. В случае, когда несколько контроллеров начинают одновременную передачу CAN кадра в сеть, каждый из них сравнивает, бит, который собирается передать на шину с битом, который пытается передать на шину конкурирующий контроллер. Если значения этих битов равны, оба контроллера передают следующий бит. И так происходит до тех пор, пока значения передаваемых битов не окажутся различными. Теперь контроллер, который передавал логический ноль (более приоритетный сигнал) будет продолжать передачу, а другой (другие) контроллер прервёт свою передачу до того времени, пока шина вновь не освободится. Конечно, если шина в данный момент занята, то контроллер не начнет передачу до момента её освобождения.

    Рис. 3. Побитовый арбитраж на шине CAN.

    Методы обнаружения ошибок.

    CAN протокол определяет пять способов обнаружения ошибок в сети:

    • Bit monitoring
    • Bit stuffing
    • Frame check
    • ACKnowledgement Check
    • CRC Check

    Bit monitoring — каждый узел во время передачи битов в сеть сравнивает значение передаваемого им бита со значением бита которое появляется на шине. Если эти значения не совпадают, то узел генерирует ошибку Bit Error. Естественно, что во время арбитража на шине (передача поля арбитража в шину) этот механизм проверки ошибок отключается.

    Bit stuffing — когда узел передает последовательно в шину 5 бит с одинаковым значением, то он добавляет шестой бит с противоположным значением. Принимающие узлы этот дополнительный бит удаляют. Если узел обнаруживает на шине больше 5 последовательных бит с одинаковым значением, то он генерирует ошибку Stuff Error.

    Frame Check — некоторые части CAN-сообщения имеют одинаковое значение во всех типах сообщений. Т.е. протокол CAN точно определяет какие уровни напряжения и когда должны появляться на шине. Если формат сообщений нарушается, то узлы генерируют ошибку Form Error.

    ACKnowledgement Check — каждый узел получив правильное сообщение по сети посылает в сеть доминантный (0) бит. Если же этого не происходит, то передающий узел регистрирует ошибку Acknowledgement Error.

    CRC Check — каждое сообщение CAN содержит CRC сумму, и каждый принимающий узел подсчитывает значение CRC для каждого полученного сообщения. Если подсчитанное значение CRC суммы, не совпадает со значением CRC в теле сообщения, принимающий узел генерирует ошибку CRC Error.

    Механизм ограничения ошибок (Error confinement).

    Каждый узел сети CAN, во время работы пытается обнаружить одну из пяти возможных ошибок. Если ошибка обнаружена, узел передает в сеть Error Frame, разрушая тем самым весь текущий трафик сети (передачу и прием текущего сообщения). Все остальные узлы обнаруживают Error Frame и принимают соответствующие действия (сбрасывают принятое сообщение). Кроме того, каждый узел ведет два счетчика ошибок: Transmit Error Counter (счетчик ошибок передачи) и Receive Error Counter (счетчик ошибок приема). Эти счетчики увеличиваются или уменьшаются в соответствие с несколькими правилами. Сами правила управления счетчиками ошибок достаточно сложны, но сводятся к простому принципу, ошибка передачи приводит к увеличению Transmit Error счетчика на 8, ошибка приема увеличивает счетчик Receive Error на 1, любая корректная передача/прием сообщения уменшают соответствующий счетчик на 1. Эти правила приводят к тому, что счетчик ошибок передачи передающего узла увеличивается быстрее, чем счетчик ошибок приема принимающих узлов. Это правило соответствует предположению о большой вероятности того, что источником ошибок является передающий узел.

    Каждый узел CAN сети может находится в одном из трех состояний. Когда узел стартует он находится в состоянии Error Active. Когда, значение хотя бы одного из двух счетчиков ошибок превышает предел 127, узел переходит в состояние Error Passive. Когда значение хотя бы одного из двух счетчиков превышает предел 255, узел переходит в состояние Bus Off.

    Узел находящийся в состоянии Error Active в случае обнаружения ошибки на шине передает в сеть Active Error Flags. Active Error Flags сотстоит из 6 доминантных бит, поэтому все узлы его регистрируют. Узел в состоянии Passive Error передает в сеть Passive Error Flags при обнаружении ошибки в сети. Passive Error Flags состоит из 6 рецессивных бит, поэтому остальные узлы сети его не замечают, и Passive Error Flags лишь приводит к увеличению Error счетчика узла. Узел в состоянии Bus Off ничего не передает в сеть (не только Error кадры, но вообще никакие другие).

    Адресация и протоколы высокого уровня

    В CAN не существует явной адресации сообщений и узлов. Протокол CAN нигде не указывает что поле арбитража (Identification field + RTR) должно использоваться как идентификатор сообщения или узла. Таким образом, идентификаторы сообщений и адреса узлов могут находится в любом поле сообщения (в поле арбитража или в поле данных, или присутствовать и там, и там). Точно также протокол не запрещает использовать поле арбитража для передачи данных.

    Утилизация поля арбитража и поля данных, и распределение адресов узлов, идентификаторов сообщений и приоритетов в сети является предметом рассмотрений так называемых протоколов высокого уровня (HLP — Higher Layer Protocols). Название HLP отражает тот факт, что протокол CAN описывает только два нижних уровня эталонной сетевой модели ISO/OSI, а остальные уровни описываются протоколами HLP.

    Рис. 4. Логическая структура протокола CAN.

    Существует множество таких высокоуровневых протоколов. Наиболее распространенные из них это:

    • DeviceNet
    • CAL/CANopen
    • SDS
    • CanKingdom

    Физичекий уровень протокола CAN

    Физический уровень (Physical Layer) протокола CAN определяет сопротивление кабеля, уровень электрических сигналов в сети и т.п. Существует несколько физических уровней протокола CAN (ISO 11898, ISO 11519, SAE J2411).

    В подавляющем большинстве случаев используется физический уровень CAN определенный в стандарте ISO 11898. ISO 11898 в качестве среды передачи определяет двухпроводную дифференциальную линию с импедансом (терминаторы) 120 Ом (допускается колебание импеданса в пределах от 108 Ом до 132 Ом. Физический уровень CAN реализован в специальных чипах — CAN приемо-передатчиках (transceivers), которые преобразуют обычные TTL уровни сигналов используемых CAN-контроллерами в уровни сигналов на шине CAN. Наиболее распространенный CAN приемо-передатчик — Phillips 82C250, который полностью соответствует стандарту ISO 11898.

    Махимальная скорость сети CAN в соответствие с протоколом равна 1 Mbit/sec. При скорости в 1 Mbit/sec максимальная длина кабеля равна примерно 40 метрам. Ограничение на длину кабеля связано с конечной скоростью света и механизмом побитового арбитража (во время арбитража все узлы сети должны получать текущий бит передачи одновременно, те сигнал должен успеть распространится по всему кабелю за единичный отсчет времени в сети. Соотношение между скоростью передачи и максимальной длиной кабеля приведено в таблице:

    скорость передачимаксимальная длина сети
    1000 Кбит/сек40 метров
    500 Кбит/сек100 метров
    250 Кбит/сек200 метров
    125 Кбит/сек500 метров
    10 Кбит/сек6 километров

    Разъемы для сети CAN до сих пор НЕ СТАНДАРТИЗОВАНЫ. Каждый протокол высокого уровня обычно определяет свой тип разъемов для CAN-сети.

    Для чего CAN шина в автомобиле

    • упрощает алгоритм подсоединения и функционирования дополнительных систем и приборов;
    • снижает влияние внешних помех на работу электроники;
    • обеспечивает одновременное получение, анализ и передачу информации к устройствам;
    • ускоряет передачу сигналов к механизмам, ходовым узлам и иным устройствам;
    • уменьшает количество необходимых проводов;
    • центральный монтажный блок и замок зажигания;
    • антиблокировочная система;
    • двигатель и коробка переключения передач;
    • подушки безопасности;
    • рулевой механизм;
    • датчик поворота руля;
    • силовой агрегат;
    • электронные блоки для парковки и блокировки дверей;
    • датчик давления в колёсах;
    • блок управления стеклоочистителями;
      ;
    • звуковая система;
    • информационно-навигационные модули.

    Как подключить сигнализацию по CAN-шине

    Для подключения КАН-шины своими руками к автосигнализации машины с автозапуском либо без него надо знать, где находится блок управления противоугонной системой. Если установка сигнализации осуществлялась самостоятельно, то процесс поиска не вызовет сложностей у автовладельца. Управляющий модуль обычно ставится под приборной панелью в районе рулевого колеса либо за контрольным щитком.

    Как произвести процедуру подключения:

    1. Противоугонная система должна быть установлена и подключена ко всем узлам и элементам.
    2. Найдите толстый кабель оранжевого цвета, он подключается к цифровой шине.
    3. Адаптер противоугонной системы подсоединяется к контакту найденной шины.
    4. Производится монтаж устройства в надежном и удобном месте, девайс фиксируется. Надо заизолировать все электрические цепи, чтобы не допустить их перетирания и утечки тока. Производится диагностика правильности выполненной задачи.
    5. На завершающем этапе настраиваются все каналы для обеспечения рабочего состояния системы. Также надо задать функциональный ряд устройству.

    Что рекомендуется выполнить сначала

    Откройте в браузере любой поисковик и задайте следующее слово: «can_osob». Во второй или третьей строке будет найден сайт «ultrastar». Скачайте документ «pdf» и сохраните его на компьютере. В документе рассматривается, как проводить начальное программирование, то есть, как задавать «номер» автомобиля в зависимости от модели и бренда.

    Скриншот документа can_osob

    Интересно то, что для разных моделей управляющая последовательность отличается. То есть, без файла «can_osob.pdf» сделать что-либо не получится.

    В файле, который здесь был назван, не приводятся схемы подключения или карты монтажа. Однако, точки подключения проводов CAN в нем все же указаны. Заметим: чаще всего шина будет двухпроводной, но для каждого автомобиля Cadillac, Chevrolet и Opel это правило не выполнено – там используется один провод.

    Допустим, модуль подключен к шине CAN и к «массе». Еще нужен провод, на котором напряжение «+12» присутствует всегда. А подключать его в процессе настройки надо будет к кабелю питания модуля. Распайка разъема будет следующей:

    1. Черный (1) – масса;
    2. Коричневый (2) – CAN-L;
    3. Красный (10) – питание;
    4. Коричнево-красный (11) – CAN-H.

    Процесс установки «номера авто» рассмотрен в документе can_osob. Допустим, все было выполнено правильно, но модуль в завершении выдает серии звуковых сигналов. Значит, был распознан только номер группы, а номер подгруппы придется задавать вручную.

    Программирование выполняют, нажимая сервисную кнопку. Которой может являться одна из клавиш автомобиля. Но к зелено-черному проводу (клемма 9) можно подключить дополнительную клавишу, замыкаемую на массу. Она в любом случае воспринимается модулем, как сервисная.

    Главный клеммник модуля CAN F5

    Преимущества StarLine Slave

    1. Три рубежа охраны – штатная система охраны, диалоговая защита starline при помощи метки-брелка или PIN-кода, использование иммобилайзера при воровстве брелков (разрешение поездки)
    2. Снятие с охраны возможно ТОЛЬКО при получении сигнала от штатного брелка и идентификации владельца меткой
    3. Беспроводная блокировка двигателя штатно либо опцией
    4. Надежное оповещение по разным каналам – на двухсторонний брелок, на мобильный телефон владельца
    5. Комфорт – автозапуск возможен с двухстороннего брелка, с мобильного телефона владельца посредством SMS или звонка, с мобильного телефона владельца посредством мобильного приложения
    6. Гибкость – гибкие каналы позволяют удовлетворить любые пожелания владельца – память положения сидений, складывание зеркал, управление люком, светом
    7. Многофункциональность – штатный брелок получает дополнительный функционал

    Единственное ограничение, которое накладывает автомобиль на использование полезной, инновационной и комфортной функции StarLine Slave – это обязательное наличие CAN-шины в автомобиле.

    голоса
    Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector